Reduction for over-depreciated assets (step D) - administrative short cuts

Abstract

Desc ription This example shows how the tax cost setting amount for over-depreciated assets may be calculated (step D of cost setting prooess) using either one of two administrative short auts.

Commentary

After the joining entity's allocable cost amount (ACA) is allocated among its reset cost base assets in proportion to their market values, and any necessary reductions are made for revenue like assets (step C of cost setting process), a further reduction may be required for each over-depreciated asset (step D).

This further reduction is required where all of the following tests are satisfied for the particular asset:

- the asset is over-depreciated at the joining time
- the head company's tax cost setting amount (as calculated so far) is more than the joining entity's terminating value for the asset (its tax written down value at the joining time)
- the joining entity paid an unfranked or partly franked dividend during the period from when it aoquired the asset to the joining time
- an amount representing the unfranked or partly franked dividend had not been further distributed as a dividend before the joining time to a recipient that was not entitled to the inter-comporate dividend rebate, and
- the dividends were paid out of profits that were sheltered from inoome tax, at least in part, by over-depreciation of the asset.

The amount of the reduction is the least of:

- the over-depreciation amount - this is the lesser of the exoess of market value of an asset over its adjustable value just before the joining time (tax written down value at the joining time), and the excess of the asset's cost over its adjustable value at that time
- the amount of income that continues to be sheltered from tax, or
- the amount by which the tax cost setting amount would, apart from this provision, exceed the joining entity's terminating value of the asset.

This reduction prevents an increase in the adjustable value of a depreciating asset where there has been a tax deferral resulting from its over-depreciation. The potential for indefinite deferral anises where a company holds an overdepreciated asset at the joining time, and the income sheltered from tax by the over-depreciation was distributed as an unfranked dividend to a recipient who was entitled to the inter-corporate dividend rebate.

Note

Determining the extent to which dividends have been

 paid out of profits sheltered from income taxA last-in-first-out (UFO) method can be used to determine the extent to which dividendswere paid out of profits that were sheltered from income tax for the purpose of calculating any reduction to the taxcost setting amounts for overdepreciated assets.

Under the UFO method, two assumptions are made. Firstly, it is assumed that dividendswere paid out of profits of income years in order from the most recent to the earliest. Once the profits have been allocated between income years according to the first assumption, it is further assumed that unfranked distributions were paid out of profits of the relevant yearthat were not subject to income tax before they were paid out of profits that were subject to income tax. \rightarrow former subsection 705-50(3A), ITAA 1997; paragraphs 1.135-1.140 and 1.147-1.148 of the Explanatory Memorandum to Tax Laws Amendment (2004 Mea sures No. 6) Bill 2004
Changes to the over-depreciation provisions
The over-depreciation provisions in the taxcost setting rules have been modified for an entity that becomes a member of a consolidated group between 9 May 2007 and 30 J une 2009. In this case a head company will only need to look at five years of dividend history immediately before the joining time to determine whether an over-depreciation adjustment is required in relation to the joining entity's a sset. Effective from 1 J uly 2009, the over-depreciation a djustment in section 705-50 has been repealed, so it will no longerapply to over-depreciated assets of entities that become subsidia ry members of a consolidated group on or afterthat date. \rightarrow Tax Laws Amendment (2010 Measures No. 1) Act 2010 (No. 56 of 2010)

A worked example showing howto calculate the over-depreciation adjustment for each asset is provided separately. \rightarrow 'Reduc tion for over-depreciated a ssets (step D)', C 2-4-610

In many cases taxpayers will not have sufficient information available to work out the reduction for over-depreciation on an asset-by-asset basis or in strict accordance with former section 705-50. In other cases, taxpayers may be able to work out the amount of reduction accurately, but with significant costs of compliance. For these reasons, the administrative short cut methods outlined in figure 1 may be used to work out the reduction amounts for overdepreciated assets. These short cut methods give a reasonable approximation of the reduction required by former section 705-50 and will be accepted by the ATO.

These administrative short cut methods have been discussed in draft form with representatives of business and the acoounting profession to ensure they achieve the legislation's policy objectives and also meet the needs of the user. If these short cut methods are not suitable for your circumstances and you would like to use another administrative approach, contact the ATO for guidance.

The administrative short cut methods are summarised in figure 1, which is followed by four examples that demonstrate how they work

Examples

Example 1 demonstrates the Aggregate Method and Example 2 demonstrates the Annual Method. Both are based on the same facts where the joining entity has no profits at thejoining time.

Example 3 demonstrates howto estimate the proportion of unfranked dividends paid by listed public companies that reach entities not entitled to the inter-corporate dividend rebate.

Example 4 demonstrates both the Aggregate Method and the Annual Method where ajoining entity has retained profits that are not accued to the joined group. This can occur where an entity joins an existing group as a result of a 100% acquisition by the group. In this case, there is no step 3 amount as there is no retained profit accrued to the group.

Note

Short cuts cannot be used for grapevines and hortic ultural plants
While formersection 705-50 a ppliesto all depreciating assets underthe Uniform Capital Allowances regime in Division 40, these short cut methods a re not available for grapevines and hortic ultural plants.

Figure 1: Summary of the over-depreciation short c ut process

1	AGGREGATE MEIHOD	2	ANNUAL MEIHOD
1A	Determine the potential over-depreciation: For all depreciating assets on hand at the joining time, total the excess of the BWDV (book written down value) over the TWDV (tax written down value).	2A	Determine the potential over-depreciation: For all depreciating assets on hand at the joining time, total the excess of the BWDV over the TWDV for each yearback to the dates of acquisition and work out the incremental increase of the excess each year.
1B	Limit the amount of over-depreciation to the extent it could result in untaxed profits: Multiply the result from 1A by 70\%.	2B	Limit the amount of over-depreciation to the extent it could result in untaxed profits: Multiply the results from 2A for each year by 70%.
1C	Reduce the potential over-depreciation adjustment for untaxed profits still in retained eamings at the joining time: Reduce the result from 1B above by the a mount of IB $\times[a /(a+b+c)]$ where: a =unfrankable retained ea mings at the joining time (excluding any ACA transitional step 3 a mount for the joining entity) b = unfra nked a mount of dividends paid by the joining entity since 1.7.1987, and $\mathrm{c}=$ the ACA transitional step 3 a mount for the joining entity.	2C	Reduce each year's potential over-depreciation adjustment for untaxed profits still in retained eamings at the joining time: Reduce each year's result from 2B above by the a mount of $2 B \times[d /(d+e+f)]$ where: $d=$ unta xed profits of that year to the extent they are in unfrankable retained eamings at the joining time (excluding those profits that are in a ny ACA transitional step 3 a mount for the joining entity) $e=$ unfranked a mount of dividends from untaxed profits of that year paid by the joining entity (or by a transferor under a Subdivision126-B rollover, to the extent they relate to over-depreciation of the rollover assets), and $f=$ unta xed profits of that year that are in the ACA transitional step 3 a mount for the joining entity.
1D	Remove double counting of revenue tax losses: Reduce the result from 1C above to the extent that the over-depreciation resulted in any revenue tax losses in the ACA step 5 adjustment for the joining entity.		Other adjustments that may reduce the overdepreciation a mount
		2D	Reduce each year's result from 2C above to the extent resulting unfranked dividendspaid were preacquisition dividends in ACA step 4.
1E	Limit adjustment to total unfranked dividends paid and transitional step 3 ACA amounts: Reduce the result from 1D above to the extent that it exceeds the total of the following a mounts: (a) unfranked dividends paid by joining entity since 1.7.1987, and (b) transitional step 3 unfranked profits.	2E	Reduce each year's result from 2D above to the extent that the over-depreciation resulted in a ny revenue tax losses in the ACA step 5 adjustment for the joining entity.
		2F	Reduce each year's result from $2 E$ above to the extent that direct or indirect sha reholders paid tax on the resulting unfranked dividends paid (excluding dividends that have resulted in a 2D reduction).
1F	Estimate the over-depreciation reduction amount per asset Allocate the result from 1E above between each asset that has been prima facie stepped up proportionately based on the a mount of each asset's prima facie cost base step up (prior to the application of the over-depreciation adjustment).	2G	Add each year's result from 2F above.
		2H	Limit adjustment to total unfranked dividends paid and transitional step 3 ACA amounts: Reduce the result from 2G above to the extent that it exceeds the total of the following a mounts: (a) unfranked dividends paid by the joining entity (or by a transferor under a Subdivision 126-B rollover, to the extent they relate to over-depreciation of the rollover assets), and (b) transitional step 3 unfranked profits.
		21	Estimate the over-depreciation reduction amount per asset Allocate the result from 2 H above to each asset proportionately based on each asset's excess of BWDV over TWDV.

Notes to figure 1, Aggregate Method

This is the simplest method for calculating the over-depreciation reduction and will minimise the cost of compliance. Broadly, this approach compares book and tax written down values at thejoining time and draws some conclusions as to how the difference has given nise to prior unfranked dividends or untaxed profits that are attributable to over-depreciation.

While less precise than the Annual Method, the Aggregate Method is still considered to provide areasonable estimate of the over-depreciation adjustment. Taxpayers should note that a different result will arise under the Annual Method. This could be higher or lower than the result under the Aggregate Method.

Step 1A: In some cases taxpayers may have assets with book written down values (BWDV) less than their tax adjustable values (TWDV); for example, where there have bæen write-downs of depreciating assets for accounting purposes. Where the difference is significant, inclusion of those assets in step 1A could materially impact on the result. If an asset's adjustable value (its tax written down value) is more than 1% of the joining entity's ACA and its TWDV is greater than its BWDV, that asset should be excluded from the calculation.

Step 1C vaniable b: Taxpayers should not include pre-1 July 1987 dividends in the variable 'b' amount. Ordinarily, those dividends pre-date the dividend imputation system, and taxpayers may be required to undertake a detailed analysis of those dividends to ascertain the extent to which they were paid out of untaxed profits. In the interests of minimising the costs of oomplianœe, those dividends are not included in the Aggregate Method.

Abstract

Step ID: Where losses have been subtracted at step 5 in calculating the ACA they are not counted again in working out the reduction for over-depreciation. The relevant amount can be estimated by considering the ACA step 5 losses for each relevant year, and the differenoe between the total book and tax depreciation claim for that year. This information should be readily available in the joining entity's prior year inoome tax returns or working papers. Where only part of a loss for a year remains unused at the joining time, the component attributable to over-depreciation can be worked out by apportioning the remainder between over-depreciation and profits sheltered from tax for other reasons (e.g. R\&D) on a pro-ratabasis.

Step IE amount (a): If ascertainable, exclude any such dividends paid before the acquisition date of depreciating assets held at the joining time. To maintain consistency with step 1C, only dividends paid from 1 July 1987 should be counted.

Step IF: In order to keep compliance costs to aminimum, the Aggregate Method involves a proportional allocation of the overall over-depreciation adjustment amount based on the initial cost base step-up.

Note

Where Law Administration Practice Statement PSLA 2004/12 is being a pplied in determining the taxcost setting amounts (TCSAs) fordepreciating assets, this step should be applied subject to paragraph 44 of that practice statement. That is, first allocate the result from step 1E to significant individual assets a nd to categories of non-signific ant assets; then, within a category of non-signific ant a ssets, alloc ate the result across the individual assets within that category on the basis of their book written down values.

Notes to figure 1, Annual Method

This approach considers over-depreciation on ayearly basis, but again by reference only to assets on hand at the joining time. Over-depreciation may have been recovered for assets sold before the joining time. In effect, this method 'reoonstructs' the historical differences between book and tax depreciation. It also considers unfranked dividends and untaxed profits on a year by year basis.

This method also differs from the Aggregate Method in that it takes acoount of dividends paid out of pre-acquisition profits (step 2D). It also has regard to whether direct or indirect shareholders paid tax on unfranked dividends relating to over-depreciation (step 2F).

These additional steps mean that this method may more closely approximate the adjustment required by former section 705-50.

Step 2A: In some cases taxpayers may have assets with book written down values (BWDV) less than their tax adjustable values (TWDV); for example, where there have been write downs of depreciating assets for accounting purposes. Where the difference is significant, inclusion of those assets in step 2A could materially affect the result. If an asset's adjustable value (TWDV) is more than 1% of thejoining entity's ACA and its TWDV is greater than its BWDV, that asset should be excluded from the calculation.

Tip: Theधsiest way tow k at theannual amounts nmy betoimpat d\&ails of all dqpeeiatingasses, alongwiththebook and tax WDVs, dqpeeiation rates andmethoos intoa spredshet. Then reconstrut annual book andtax dqpeiationforerhasst forem year.

Note: Reconstruction of book and tax WDV for assets on hand at the joining time results in a reasonably accurate calculation of the total over-depreciation amount. However this requirement may give rise to a significant compliance burden. As an altemalive, companies may base the step 2A amounts on the actual difference between book and tax WDV year by year. This altemative may have the effect of over-stating the over-depreciation for a year, because its use could involve counting the differenoe for assets held in that year but not held at thejoining time. However, this would have a trade-off in reduoed complianœe costs.

Step 2B: The percentage of 70\% used here reflects the cument general company tax rate. Even though different tax rates may have applied in the years leading up to the joining time, restatement of future tax liabilities at the new rates will release (or draw) profits such that the amount available for distribution will be aligned with the tax rate at the joining time.

Taxpayers may use a percentage based on the tax rate applicable for a particular year in this step, instead of using 70\%, provided adjustments are made to the potential over-depreciation figure to reflect the impact of changes in the tax rate on the deferred (or future) tax liability acoount and the consequential change to distributable profits in the year the tax rate changed.

Step 2C vaniable e: Variable ' e ' in the formula could potentially include pre1 July 1987 dividends, which predate the dividend imputation system. Taxation Determination TD 2004/4 confirms that dividends paid before 1 July 1987 are unfranked dividends for the purposes of former section 705-50 and therefore should be counted. Note, that this will not be the case where the entity has joined the group on or after 9 May 2007, as the head company will only need to look at five years of dividend history immediately before the joining time to determine whether an over-depreciation adjustment is required in relation to the joining entity's asset \rightarrow Tax La ws Amendment (2010 Measures No. 1) Act 2010 (No. 56 of 2010) Given the removal of theinter-comporate dividend rebate for non-group public company shareholders from 1 July 2000, dividends after 30 June 2000 should not be counted in variable 'e' where the public company examined is not a wholly-owned subsidiary of another resident public company.

Variable 'e' should also include unfranked dividends paid by atransferor of a depreciating asset under a Subdivision 126-B rollover, to the extent the dividend was paid out of profits of the transferor that were sheltered from tax by over-depreciation of the transfermed asset. If the annual method is also used to work out the over-depreciation adjustment for depreciating assets still held by the transferor when it joins the consolidated group, dividends related to rollover assets counted at variable ' e ' in step 2C in the transferee's calculation should not be counted in steps 2C and 2H of the transferor's calculation. This will prevent double counting of those dividends.

Step 2D: To the extent that dividends paid out of profits sheltered from income tax because of over-depreciation have been subtracted at step 4 in calculating the ACA, they are not counted again in working out the reduction for over-depreciation. This amount should be subtracted at step 2D of the short cut process.

Step 2E: This is the same process as in step 1D.
Step 2F: Where unfranked dividends from profits sheltered from tax by overdepreciation have been paid as (or used to pay) unfranked dividends by a public company, it may not be possible for the consolidated group to work out the extent to which those dividends have ultimately reached the hands of
recipients not entitled to the inter-corporate dividend rebate. Such a tracing exercise would also involve significant costs.

In those cases, an analysis of the public company's share register should be undertaken to estimate the breakdown between those shares for which it is clear the shareholder would not be entitled to the inter-corporate dividend rebate (e.g. an individual or non-resident), and those for which it is unclear who may be the ultimate recipient (e.g. a nomine). A methodology for estimating the step $2 F$ amount, without the need for tracing, is explained in example 3.

Where a taxpayer is able to demonstrate that a higher percentage of dividends ultimately reaches beneficial shareholders who are not entitled to the intercorporate dividend rebate, that higher percentage may be used at step 2 F .

Note:

Where a public company does not use either the Aggregate or Annual method but calculates the over-depreciation adjustment otherwise in accordance with the requirements of formersection 705-50, the ATO will accept Step 2F being used to ascertain the extent to which the unfranked dividends reached the hands of direct orindirect shareholders who were not entitled to the inter-coporate dividend rebate.

Step 2F is not available to be used in conjunction with the Aggregate Method.

Step 2H amount (a): If ascertainable, excluding any such dividends paid before the aoquisition date of depreciating assets held at the joining time. However, dividends paid by a transferor of an asset subject to a rollover under Subdivision 126 -B that relate to over-depreciation of the asset in the hands of the transferor should be included.

If the annual method is also used to work out the over-depreciation adjustment for depreciating assets still held by the transferor when it joins the consolidated group, dividends related to rollover assets counted at variable ' e ' in step 2C in the transferee's calculation should not be counted in steps 2C and 2H of the transferor's calculation. This will prevent double counting of those dividends.

Given the removal of the inter-corporate dividend rebate for non-group public company shareholders from 1 July 2000, dividends after 30 June 2000 should not be counted in amount ' a ' where the public company examined is not a wholly-owned subsidiary of another resident public company.

Step 21: The Annual Method uses a proportional allocation of the overall over-depreciation adjustment amount based on the difference between the book written down value (BWDV) and the tax adjustable value or written down value (TWDV). This is different to the allocation under the Aggregate Method, and more closely approximates the methodology required by former section 705-50.

Note

Where Law Administration Practice Statement PS LA 2004/ 12 is being a pplied in determining the TCSAs for depreciating assets, this step should be applied subject to paragraph 44 of that practice statement. That is, first alloc ate the result from step 1E to signific ant individual assets a nd to categories of non-signific a nt assets; then, within a category of non-signific a nt assets, allocate the result a cross the individual assets within that category on the basis of their book written down values.

Example 1 -
 Aggregate Method

Facts

Sub Co was incorporated by Hold Co on 1 July 1995. Hold Co elects to form a consolidated group on 1 July 2002. Sub Co's financial position is as follows:

Table 1: Sub Co - financial position at 30 J une 2002 (\$)

Cash	13,144	Capital	50,487
Stock on ha nd	6,693	Retained ea mings (loss)	(298)
Depreciating assets	9,520	Asset revaluation reserve	863
Otherassets	23,850	Provision for long service	1,393
Future tax asset	418	Future tax liability	1,180
		Provision forincome tax	0
			53,625

Sub Co's franking acoount has a credit balance on 20June 2002 of $\$ 56$. After adjusting for hypothetical payments etc. under subsection 705-90(4), the hypothetical balance is $\$ 56$.

Sub Co's depreciation schedules for the year ending 30 June 2002 are shown in tables 2 and 3. In this case the market values (MV) of depreciating assets are equal to their book values at the joining time.

Sub Co incurs atax loss of $\$ 640$ in the year ending 30June 2002. Tax deductions related to over-depreciation and R\&D for that year are \$378 and \$26 respectively. As the total loss exceeds these tax deductions, \$378 of the loss is treated as being attributable to deductions related to over-depreciation. But for the loss incured in the year ending 30June 2002, Sub Co would have had $\$ 99$ in undistributed profits accrued to the head oompany able to be counted in ACA step 3.

Before the consolidated group was formed, Sub Co paid a total of $\$ 1,135$ in unfranked dividends. These were partly attributable to profits sheltered from tax by over-depreciation and partly altributable to profits sheltered from tax by conoessional deductions for research and development expenditure.

Table 2: Accounting depreciation sc hedule for year ending 30 J une 2002

Asset	Cost (\$)	Opening WDV (\$)	Method	Life (years)	Rate $\%$	Depreciation (\$)	Closing WDV (\$)
Asset 1	1,100	732	PC	15	6.7	74	658
Asset 2	1,200	480	PC	10	10	120	360
Asset 3	1,300	1,040	PC	20	5	65	975
Asset 4	1,400	980	PC	10	10	140	840
Asset 5	1,500	1,283	DV	20	7.5	96	1,187
Asset 6	1,600	1,493	PC	15	6.7	107	1,386
Asset 7	1,700	1,700	DV	5	30	510	1,190
Asset 8	1,800	781	DV	12	13	101	679
Asset 9	1,900	1,487	DV	40	4	59	1,428
Asset 10	2,000	929	DV	8	12	111	817
Total		$\mathbf{1 0 , 9 0 4}$				$\mathbf{1 , 3 8 5}$	$\mathbf{9 , 5 2 0}$

Table 3: Inc ome tax depreciation sc hedule for yearending $\mathbf{3 0} \mathbf{J}$ une 2002

Asset	Cost (\$)	Opening WDV (\$)	Method	Life (years)	Rate $\%$	Depreciation (\$)	Closing WDV (\$)
Asset 1	1,100	385	PC	15	13	143	242
Asset 2	1,200	0	PC	10	17	0	0
Asset 3	1,300	624	PC	20	13	169	455
Asset 4	1,400	686	PC	10	17	238	448
Asset 5	1,500	1,110	PC	20	13	195	915
Asset 6	1,600	1,280	DV	15	20	256	1,024
Asset 7	1,700	1,700	DV	5	30	510	1,190
Asset 8	1,800	320	DV	12	25	80	240
Asset 9	1,900	1,010	DV	40	10	101	909
Asset 10	2,000	235	DV	8	30	70	165
Total		$\mathbf{7 , 3 5 0}$				$\mathbf{1 , 7 6 2}$	$\mathbf{5 , 5 8 8}$

Calculation Worksheet 1: ACA calculation (\$)

Step1

Cost base (CB) of membership interests (indexed)		$\begin{aligned} & 52,961 \\ & 50,487 \end{aligned}$	
Reduced cost base (RCB) of membership interests			
Market value (MV) of membership interests		56,552	
MV exceeds CB, so use CB		52,961	
Step 2			
Add: Liabilities			
Provision for long service leave	1,393		
Less subsection 705-75(1) reduction (1,393 $\times 30 \%$)	-418		
Reduction required by section 705-80 (note 1)	-975	0	
Provision for income tax		0	
Future tax liability (note 2)		1,180	1,180
Result after step 2			54,141
Step 3			
Add: Frankable undistributed owned profits	0		
Transitional rule for tra nsitional entity			
Add: Unfrankable undistributed owned profits	0	0	
Result after step 3			54,141
Step 3A			
Adjust for Subdivision 126-B rollovers by non-resident	NA		0
Result after step 3A			54,141
Extra step on formation only			
Adjust for Subdivision 126-B rollovers by head company	NA		0
Result after formation rollover adjustment			54,141

Step 4

Subtract: distributions of ac quired profits 0
Distributions of owned profits recouping owned loss 0
0
Result after step 4
Step 5
Subtract: owned unused losses 640
Exclude to extent step 3 amount reduced (note 3) 99
Result after step 5

Step 6

Subtract: tax benefit from acquired transferred losses 0
(acquired transferred losses x general company tax rate) $\times 30 \% 0$

Result after step 6	53,600

Step 7
Subtract certain inherited deductions NA 0
Result afterstep 7 is the ACA $\quad \mathbf{5 3 , 6 0 0}$

Note 1: Where a joining entity has an accounting liability that is recognised for accounting purposes earlier than for income tax purposes (such as a provision for long service leave) section 705-80 requires a notional ACA calculation. If this results in a different a mount for the ACA the liability must be adjusted to the extent of the difference. In this case the notional ACA is $\$ 975$ less than the ACA calculated without applying section 705-80. The provision for long service leave must therefore be reduced by this a mount. See section C2-4-245 of this manual which shows how section 705-80 applies including administrative short cuts.
Note 2: Under subsection 705-70(1) the future tax liability (FIL) of the joining entity in respect of the depreciating assets is counted at step 2. The a mount to be counted is redetermined under subsection 705-70(1A) so that it equals the FIL to be carried by the head company. However as Sub Co is a transitional entity section 701-32 of the Income Tax (Transitional Provisions) Act 1997 tums off subsection 705-70(1A). Therefore the a mount added at step 2 is $\$ 1180$.
Note 3: Step 5 excludes losses accrued to the group to the extent that they have reduced the accounting profits available for distribution: subsection $705-100$ (2). The balance of retained eamings prior to the year commencing 1 J uly 2001 was $\$ 99$. This a mount would have been counted at step 3 as it would have been payable as a fully franked dividend but for the loss made in the 2001-02 year. The step 5 a mount is reduced accordingly.

Retained cost base assets

Cash $(\$ 13,144)$ and trading stock $(\$ 6,693)$ retain their existing tax values. In this example Sub Co is a continuing majonity owned entity, so items of trading stock are treated as retained cost base assets.

The remainder of the ACA after setting the tax cost of retained cost base assets is $\$ 33,763$. This is allocated among the reset cost base assets (table 4). The tax cost setting amount (TCSA) for revenue-like assets, such as depreciating assets, is limited to the greater of their market value or teminating value (i.e. tax adjustable value at the joining time). Assets 11 to 19 are not revenue like assets. For assets 11 to 19 the amounts in the last column are the final TCSAs. For assets 1 to 10, further calculations are required (see tables 5 and 6).
Table 4: Apportionment of ACA to reset cost base assets (\$)

Asset	Cost	Terminating value	Market value	Apportionment	TCSA before reduction	Section 705-40 max. amount	Excess for revenue -like assets	TCSA after reduction
Depreciating assets								
1	1,100	242	658	$33,763 \times 658 / 38,870$	571	658	0	571
2	1,200	0	360	$33,763 \times 360 / 38,870$	313	360	0	313
3	1,300	455	975	$33,763 \times 975 / 38,870$	847	975	0	847
4	1,400	448	840	$33,763 \times 840 / 38,870$	730	840	0	730
5	1,500	915	1,187	$33,763 \times 1,187 / 38,870$	1,031	1,187	0	1,031
6	1,600	1,024	1,386	$33,763 \times 1,386 / 38,870$	1,204	1,386	0	1,204
7	1,700	1,190	1,190	$33,763 \times 1,190 / 38,870$	1,034	1,190	0	1,034
8	1,800	240	679	$33,763 \times 679 / 38,870$	590	679	0	590
9	1,900	909	1,428	$33,763 \times 1,428 / 38,870$	1,240	1,428	0	1,240
10	2,000	165	817	$33,763 \times 817 / 38,870$	710	817	0	710
Sub- total	15,500	5,588	9,520		8,270	9,520		8,270
Non-depreciating assets								
11	2,100	2,204	2,210	$33,763 \times 2,210 / 38,870$	1,920	-	-	1,920
12	2,200	2,309	2,320	33,763 x 2,320/38,870	2,015	-	-	2,015
13	2,300	2,413	2,430	$33,763 \times 2,430 / 38,870$	2,111	-	-	2,111
14	2,400	2,518	2,540	$33,763 \times 2,540 / 38,870$	2,206	-	-	2,206
15	2,500	2,623	2,550	$33,763 \times 2,550 / 38,870$	2,215	-	-	2,215
16	2,600	2,728	2,600	$33,763 \times 2,600 / 38,870$	2,258	-	-	2,258
17	2,700	2,833	2,500	$33,763 \times 2,500 / 38,870$	2,172	-	-	2,172
18	2,800	2,938	2,450	33,763 $\times 2,450 / 38,870$	2,128	-	-	2,128
19	2,900	3,043	2,750	$33,763 \times 2,750 / 38,870$	2,389	-	-	2,389
Good -will	0	0	7,000	33,763 $\times 7,000 / 38,870$	6,080	-	-	6,080
Total			38,870		33,763			33,763

Table 5: Adjustment for over-depreciation using the Aggregate Method (\$)Step 1A. Potential for over-depreciation
Total book written down value (BWDV) 9,520
Less: total tax written down values (TWDV) 5,588
Result of step 1A 3,932
Step 1B. Limit 1A to extent it could result in untaxed profits
Result of step 1B (Result of 1A x 70\%, i.e. 3,932 x 70\%) 2,752
Step 1C. Reduce potential for untaxed profits still in retained eamings
Subtract $1 B \times a /(a+b+c)$ from result of step $1 B$, where:
a =unfrankable retained eamings(excluding transitional step 3) 0
b = unfranked amount of prior dividends paid since 1987 1,135
c = transitional additional step 3 ACA amount 0
$[2,752 \times(0 / 0+1,135+0)=0]$ 0
Result of step 1C 2,752
Step 1D. Remove double counting for unused losses
Unused loss of $\$ 640$ for the 2001-02 year
\$378 relatesto over-depreciation 378
Result of step 1D 2,374
Step 1E Limit to unfranked dividends plus transitional step 3 ACA
Total unfranked dividendssince 1987 1,135
Add: transitional step 3 ACA amount 0
Result of step 1E 1,135

Step 1F: The amount at step 1E is allocated in table 6 to each of the depreciating assets on a pro-rata basis according to the potential step-up of tax value.

Table 6: Allocation of over-deprec iation aggregate adjustment (\$)

Asset	TWDV (AV)	TCSA (table 4)	Potential step up	Pro-rata according to potential step up	Over- depreciation adjustment	Final TCSA
1	242	571	329	$1,135 \times 329 / 2,839$	132	439
2	0	313	313	$1,135 \times 313 / 2,839$	125	188
3	455	847	392	$1,135 \times 392 / 2,839$	157	690
4	448	730	282	$1,135 \times 282 / 2,839$	113	617
5	915	1,031	116	$1,135 \times 116 / 2,839$	46	985
6	1,024	1,204	180	$1,135 \times 180 / 2,839$	72	1,132
7	1,190	1,034	0	$1,135 \times 0 / 2,839$	0	1,034
8	240	590	350	$1,135 \times 350 / 2,839$	140	450
9	909	1,240	331	$1,135 \times 331 / 2,839$	132	1,108
10	165	710	546	$1,135 \times 546 / 2,839$	218	492
Total	$\mathbf{5 , 5 8 8}$	$\mathbf{8 , 2 7 0}$	$\mathbf{2 , 8 3 9}$		$\mathbf{1 , 1 3 5}$	$\mathbf{7 , 1 3 5}$

Note that the over-depreciation adjustment must not reduce the TCSA below the depreciating asset's tax written down value (i.e. its adjustable value) at the joining time.

Example 2-

Annual
Method
Fa cts The facts are the same as for example 1. The taxpayer wishes to use the Annual Method outlined in figure 1 to estimate the total amount of reduction for overdepreciation.

Table 7: Known data

Asset	$\begin{gathered} \text { Cost } \\ \$ \end{gathered}$	Tax method	Tax depreciation rate (\%)	Tax depreciation y/e 30.6.02 (\$)	$\begin{aligned} & \text { TWDV } \\ & \text { 30.6.02 } \\ & \text { (\$) } \end{aligned}$	Book method	Book depreciation rate (\%)	Book depreciation y/e 30.6.02 (\$)	$\begin{aligned} & \text { BMDV } \\ & \text { 30.6.02 } \end{aligned}$ (\$)
1	1,100	PC	13	143	242	PC	6.7	74	658
2	1,200	PC	17	0	0	PC	10	120	360
3	1,300	PC	13	169	455	PC	5	65	975
4	1,400	PC	17	238	448	PC	10	140	840
5	1,500	PC	13	195	915	DVM	7.5	96	1,187
6	1,600	DV	20	256	1,024	PC	6.7	107	1,386
7	1,700	DV	30	510	1,190	DVM	30	510	1,190
8	1,800	DV	25	80	240	DVM	13	101	679
9	1,900	DV	10	101	909	DVM	4	59	1,428
10	2,000	DV	30	71	165	DVM	12	111	817

Table 8: Calculating TWDV extrapolating bac kwards to acquisition time (\$)

Asset	Cost	TWDV 30.6.02	TWDVs calc ulated for these dates						
			30.6.01	30.6.00	30.6.99	30.6.98	30.6.97	30.6.96	1.7 .95
1	1,100	242	385	528	671	814	957	1,100	
2	1,200	0	0	0	0	0	0	0	0
3	1,300	455	624	793	962	1,131	1,300		
4	1,400	448	686	924	1,162	1,400			
5	1,500	915	1,110	1,305	1,500				
6	1,600	1,024	1,280	1,600					
7	1,700	1,190	1,700						
8	1,800	240	320	427	569	759	1,013	1,350	1,800
9	1,900	909	1,010	1,122	1,247	1,385	1,539	1,710	1,900
10	2,000	165	235	336	480	686	980	1,400	2,000
Total		5,588	7,350	7,035	6,591	6,175	5,789	5,560	5,700

Assets 1 to 5 were depreciated for tax purposes using the prime cost (PC) method. The TWDVs as at 30.6.01 were calculated by simply adding back the annual depreciation amount to the TWDV at 30.6.02. This method was used
for each asset until its cost was reached. Note that no amount has been calculated for asset 2, as this asset had been written off for tax purposes before the joining time. Further work is neoessary to work out the TWDVs for asset 2.

Assets 6 to 10 were depreciated using the diminishing value (DV) method. Asset 6's TWDV as at 30.6.01 was worked out by multiplying the TWDV at 30.6 .02 by $100 / 80$. The figure of 80 is 100 minus the depreciation rate of 20% - i.e. $\$ 1,024 \times 100 / 80=\$ 1,280$. For the next year back, the TWDV was worked out at $\$ 1,280 \times 100 / 80$. This method was used for each asset until its oost was reached.

Table 9: Calculating BNDV extrapolating backwards to acquisition time (\$)

Asset	BWDV30.6.02	BWDVs calc ulated forthese dates						
		30.6.01	30.6.00	30.6.99	30.6.98	30.6.97	30.6.96	1.7 .95
1	658	732	805	879	953	1,026	1,100	
2	360	480	600	720	840	960	1,080	1,200
3	975	1,040	1,105	1,170	1,235	1,300		
4	840	980	1,120	1,260	1,400			
5	1,187	1,283	1,388	1,500				
6	1,386	1,493	1,600					
7	1,190	1,700						
8	679	781	897	1,031	1,185	1,362	1,566	1,800
9	1,428	1,487	1,549	1,614	1,681	1,751	1,824	1,900
10	817	929	1,055	1,199	1,363	1,549	1,760	2,000
Total	9,520	10,904	10,120	9,373	8,657	7,949	7,330	

Table 9 uses the same methods used in table 8 to calculate the BWDVs.
Table 9 shows asset 2 was acquired on 1.7.95. We can now go back and work out the TWDVs for that asset, working forward from the aoquisition time calculated in table 9.

Table 10: Calculating TWDV for asset 2 and adding to totals for table 8 (\$)

Asset	Cost	TWDV30.6.02	TWDVs calc ulated for these dates						
			30.6.01	30.6.00	30.6.99	30.6.98	30.6.97	30.6.96	1.7.95
2	1,200	0	0	180	384	588	792	996	1,200
Sub- total from table 8		5,588	7,350	7,035	6,591	6,175	5,789	5,560	
Total		5,588	7,350	7,215	6,975	6,763	6,581	6,556	

Table 11: Step 2A - Incremental increase in excess of book and tax written down values (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$	Total
BWDVs from table 9	9,520	10,904	10,120	9,373	8,657	$\mathbf{7 , 9 4 9}$	$\mathbf{7 , 3 3 0}$	
TWDVs from table 10	5,588	7,350	7,215	6,975	6,763	6,581	6,556	
Exc ess	3,932	3,554	2,905	2,398	1,893	1,368	$\mathbf{7 7 4}$	
Incremental increase	$\mathbf{3 7 8}$	$\mathbf{6 4 9}$	$\mathbf{5 0 7}$	$\mathbf{5 0 5}$	$\mathbf{5 2 5}$	$\mathbf{5 9 4}$	$\mathbf{7 7 4}$	$\mathbf{3 , 9 3 2}$

Table 12: Step 2B - Limit to extent it could result in untaxed profits (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$
Result after step 2A	378	649	507	505	525	594	774
$\mathbf{7 0 \%}=$ result after step 2B	$\mathbf{2 6 5}$	$\mathbf{4 5 4}$	$\mathbf{3 5 5}$	$\mathbf{3 5 3}$	$\mathbf{3 6 8}$	$\mathbf{4 1 6}$	$\mathbf{5 4 2}$

Table 13: Step 2C - Reduction for certain retained eamings (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$
Result after step 2B table 12	265	454	355	353	368	416	542
D	0	0	0	0	0	0	0
E	0	0	218	264	137	355	161
F	0	0	0	0	0	0	0
2B x	0	0	0	0	0	0	0
[d/(d+e+f)]	$\mathbf{2 6 5}$	$\mathbf{4 5 4}$	$\mathbf{3 5 5}$	$\mathbf{3 5 3}$	$\mathbf{3 6 8}$	$\mathbf{4 1 6}$	$\mathbf{5 4 2}$
Result after step 2C							

There were no undistributed profits at thejoining time, so no amounts for 'd' and ' f ' in the formula in table 13. Acoordingly there is no adjustment for step 2C. The amounts for 'e' are based on an analysis of the unfranked dividends paid and summarised in table 14.

Table 14: Summary of dividends paid before the joining time

	Dividend paid			Out of this year's profits		
Date	Franked \$	Unfranked \$		Yearending	Taxed \$	Untaxed \$
1.12 .96	2,039	161		30.6 .96	2,039	161
1.12 .97	2,145	355		30.6 .97	2,145	355
1.12 .98	2,663	137		30.6 .98	2,663	137
1.12 .99	2,136	264		30.6 .99	2,136	264
1.12 .00	2,282	218		30.6 .00	2,282	218
1.12 .01	1,600	0		30.6 .01	1,600	0

Table 15: Step 2D - Reduction forstep 4 ACA amount attributable to over-depreciation (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$
Result after step 2C	265	454	355	353	368	416	542
Step 4 ACA distributions attributable to over- depreciation	0	0	0	0	0	0	0
Result after step 2D	$\mathbf{2 6 5}$	$\mathbf{4 5 4}$	$\mathbf{3 5 5}$	$\mathbf{3 5 3}$	$\mathbf{3 6 8}$	$\mathbf{4 1 6}$	$\mathbf{5 4 2}$

There were no distributions of profits subtracted at ACA step 4

Table 16: Step 2E-Reduction for step 5 ACA amount attributable to over-depreciation (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$
Result after step 2D	265	454	355	353	368	416	542
Step 5 ACA losses attributable to over- depreciation	265	0	0	0	0	0	0
Result after step 2F	$\mathbf{0}$	$\mathbf{4 5 4}$	$\mathbf{3 5 5}$	$\mathbf{3 5 3}$	$\mathbf{3 6 8}$	$\mathbf{4 1 6}$	$\mathbf{5 4 2}$

Table 17: Step 2F - Reduction for distributions to individuals etc. not entited to inter-coporate dividend rebate (\$)

	$\mathbf{3 0 . 6 . 0 2}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 9 8}$	$\mathbf{3 0 . 6 . 9 7}$	$\mathbf{3 0 . 6 . 9 6}$
Result after step 2E	0	455	354	353	368	416	542
Distributions traced to individuals etc.	0	0	0	0	0	0	0
Result after step 2F	$\mathbf{0}$	$\mathbf{4 5 5}$	$\mathbf{3 5 4}$	$\mathbf{3 5 3}$	$\mathbf{3 6 8}$	$\mathbf{4 1 6}$	$\mathbf{5 4 2}$

All of the unfranked rebatable dividends were retained by the head oompany in this example.

Step 2G totals the year-by-year results after step 2F, i.e \$2,488.

Table 18: Step $\mathbf{2 H}$ - Limit to unfranked dividends plus transitional step 3 ACA
(\$)

Total unfranked dividends paid	1,135
Add: tra nsitional step 3 ACA amount	0

$\begin{array}{ll}\text { Result of step 2H } & \mathbf{1 , 1 3 5}\end{array}$

The maximum adjustment for over-depreciation is limited to the step 2 H amount of $\$ 1,135$. This amount is allocated to the depreciating assets in table 19.

Table 19: Step 2l-Allocation of over-deprec iation total adjustment under Annual Method (\$)

Asset	TWDV (AV)	BWDV	Excess of BWDV over TWDV	Pro-rata according to excess of BWDV over TWDV	Over- depreciation adjustment	TCSA (table 4)	Final TCSA
1	242	658	416	$1,135 \times 416 / 3,932$	120	571	451
2	0	360	360	$1,135 \times 360 / 3,932$	104	313	209
3	455	975	520	$1,135 \times 520 / 3,932$	150	847	697
4	448	840	392	$1,135 \times 392 / 3,932$	113	730	617
5	915	1,187	272	$1,135 \times 272 / 3,932$	79	1,031	953
6	1,024	1,386	362	$1,135 \times 362 / 3,932$	104	1,204	1,099
7	1,190	1,190	0	$1,135 \times 0 / 3,932$	0	1,034	1,034
8	240	679	439	$1,135 \times 439 / 3,932$	127	590	463
9	909	1,428	519	$1,135 \times 519 / 3,932$	150	1,240	1,090
10	165	817	652	$1,135 \times 652 / 3,932$	188	710	522
Total	$\mathbf{5 , 5 8 8}$	$\mathbf{9 , 5 2 0}$	$\mathbf{3 , 9 3 2}$			$\mathbf{1 , 1 3 5}$	

Note that the over-depreciation adjustment must not reduœe the TCSA below the depreciating asset's tax written down value (i.e. its adjustable value) at the joining time.

The method of apportionment in table 19 is different to that used in table 6, as the Annual Method provides more detailed information, allowing a better estimate of the reduction amount than is afforded by the Aggregate Method.

Example 3 Estimating the proportion of unfranked dividends paid by listed public companies that reach entities not entitled to the inter-oomporate dividend rebate

For the purpose of working out the amount to be excluded at step 2F of the short cut method for calculating the over-depreciation reduction amount, the ATO will acoept an estimate worked out as follows:

1. Examine the largest 20 shareholders named in the public company's annual report, determine the category (in table 20) that each falls into and apply the proportions set out in the table to the share percentage held by each of these top 20 shareholders to arnive at a ratio for the total shareholding of the top 20.
2. Apply the ratio worked out in step 1 for the top 20 shareholders to the remaining shareholders to amive at an estimated breakdown between entitled and not entitled for those remaining shareholders.
3. Add step 1 and step 2 amounts.

Table 20: Ratios for different shareholder categories for use in determining proportions of unfranked dividends to be treated as reaching entities that are and are not entitled to the intercomorate dividend rebate

Shareholderentity category	Proportion of dividends paid to this category of entity treated as ultimately reaching recipients that are entitid to the inter-coporate dividend rebate	Proportion of dividends paid to this category of entity treated as ultimately reaching recipients that are not entitited to the inter-comorate dividend rebate
Public company	55%	45%
Life insurance company	25%	75%
Comorate unit trust	15%	85%
Public trading trust	15%	85%
Othertrusts	15%	85%
Superannuation fund	0%	100%
Private company	0%	100%
Nominee	25%	75%
Individual	0%	100%
Non-resident	0%	100%
Exempt body	0%	100%

The final percentage for all shareholders in the 'not entitled' category after step 3 is treated as being the proportion of unfranked dividends that ultimately reached beneficial owners not entitled to the inter-corporate dividend rebate. The balance is treated as the proportion not reaching such beneficial owners.

The results under this method for a sample financial year may be used for other years, provided there has been no significant change in the shareholder mix. Where there has been a significant change, sampling will be necessary either side of the period of abnomal trading to ensure the samples are more representative of the mix of shareholder categories for those years.

The proportion of life companies, other public companies, trusts, and nominees treated as being entitled to the inter-corporate dividend rebate has been based on statistical analysis of shareholder types, retention of profits rates, and varying entitlements to the rebate depending on the type of entity involved.

Where a taxpayer is able to demonstrate that a higher percentage of dividends ultimately reaches beneficial shareholders who are not entitled to the intercorporate dividend rebate, that higher percentage may be used at step 2 F .

Note: This method for estimating the step 2F amount is only available for dividends paid by listed public companies.

Fa cts Company X is a listed public company. It elects to consolidate, with SCo as one of its wholly owned subsidiaries. It received unfranked rebatable dividends from S Co before consolidation, attributable to profits made by SCo that were sheltered from tax by over-depreciation. Company X used thesefunds to pay unfranked dividends. Company X is unable to work out precisely the extent to which these dividends reached beneficial owners not entitled to the intercorporate dividend rebate. This is due primarily to large shareholdings by nominees. Company X's largest 20 shareholders are listed in table 21. Shareholder 5 is a life insurance company.

Calc ulation The shareholders are first categorised acoording to entitlement to the intercorporate dividend rebate (table 21).

Table 21: Estimating the amount to be subtracted under step 2F

			$\begin{array}{c}\text { Entitlement to inter- } \\ \text { corporate dividend } \\ \text { rebate }\end{array}$	
Ratio of				

Shareholdings have been split between the entitled and not entitled categories in the proportions stated above. After this adjustment, the top 20 (31.6\%) consists of 7.23% entitled to the inter-corporate dividend rebate under former section 46 or former section 46A of the ITAA 1936, and 24.37\% not entitled to the rebate. The same proportions are applied to the remaining shareholders to get proportions of entitled (22.88\%), and not entitled (77.12\%). Unfranked dividends in this latter category are not counted in the tax deferral amount for over-depreciation under step 2F.

Example 4 Joining with retained profits but no step 3amount using both methods

SCo is incorporated with contributed capital of $\$ 100,000$ on 1 July 1998, and acquires various assets and operates a business. The company distributes all its retained profits in the each of the following years as franked and unfranked dividends, with the dividends franked to the extent of available franking credits. Unfranked dividends were rebatable to the shareholder under section 46 of IncomeTax Assessmet Ad 1936. SCo recognises defered tax liabilities (DTL) in respect of its over-depreciated assets and no DTL is reoognised in relation to the asset revaluation reserve created. On 2 July 2002, all of the shares in SCo are acquired by H Co, the head company of a consolidated group, for $\$ 112,040$. SCo's financial position at the joining time is as follows:

Table 22: SCo - Statement of financial position at the joining time (\$)

Cash	54,680	Contributed capital	100,000
Depreciating assets (DA)		Asset revaluation reserve	10, 000
Cost Less Depreciation	$\begin{array}{rr} 12,000 & \\ 3,200 & 8,800 \end{array}$		
Otherassets (cost 40,000)	50,000	Retained eamings	2,040
		Provision fortax	480
		DTL	960
	113,480		113,480

The tax and acoounting depreciation schedules, defered tax liability, acoounting profit and dividends paid out summanies at the joining time are provided in tables 28 to 32 . For simplicity, any transactions of SCo that occured on 1 July 2002 are ignored in this example.

Table 23: Calculation of entry ACA (\$):

Entry ACA calculation

Step 1 - cost of membership interests
Step 2 - provision fortax
480

- DTL after a pplying subsection 705-70(1A)

297*
Steps 3 to 7 N/A
ACA
Tax cost setting amounts (TCSA)
Retained cost base assets - cash 54,680
Remainder to be allocated to reset cost base assets
*SCo is not a transitional entity, so subsection 705-70(1A) a pplies to the DTL. Its detailed calculation is not provided in this exa mple. There are examples at C 2-4-242 detailing the a pplication of subsection 705-70(1A) to DTLs.

Aggregate method in over-depreciation shortcuts

Table 24: Alloc ation of remainder of entry ACA to reset cost base assets (\$)

Asset	AV	MV*	TCSA 1	OD reduction**	TCSA 2***
DA 1	800	2,400	2,373	451	1,922
DA 2	800	1,400	1,384	167	1,217
DA 3	2,400	3,200	3,164	219	2,945
DA 4	1,600	1,800	1,780	52	1,728
Other assets	50,000	49,436		$\mathbf{8 8 9}$	$\mathbf{7 , 8 1 2}$
Total	$\mathbf{5 8 , 8 0 0}$	$\mathbf{5 8 , 1 3 7}$			
*The market value in this exa mple is the sa me as book value.					
**The OD (over depreciation) reduction column is from the following table (table 25), step 1F.					
**The TC SA 2 column a mounts are the results of TC SA 1 a mounts minus OD reduction a mounts for relevant assets. The					
TC SA 2 mounts are the final TC SAs for the relevant assets.					
Note that $\$ 49,436$ is the TC SA of Other assets.					

Table 25: Calculation of over-depreciation reduction using aggregate shortc ut method (\$)

Step 1A	Determine the potential for OD: Total BWDV	8,800	
	Less Total TWDV (AV)	5,600	3,200
Step 1B	Step 1A x 70\%		2,240
Step 1C	Subtract 1B $\times a /(a+b+c)$ from Step 1B, where:		
	$a=$ unfrankable retained profits		
	$\mathrm{b}=$ unfranked dividends paid post 30.6.87		
	c = transitional step 3 amount		
	$2240 \times 920 * /(920+889+0)=1,139$	1,139	1,101
Step 1D	Remove double counting forunused losses	N/A	1,101
Step 1E	Limit Step 1D result by sum of		
	(a) unfranked dividends	889	
	(b) transitional step 3 profits	0	889**

Step 1F: Estimate the over-depreciation reduction amount per asset

	TaxAV	TCSA 1	Step up***	OD reduction	TC SA 2
DA 1	800	2,373	1,573	451	1,922
DA 2	800	1,384	584	167	1,217
DA 3	2,400	3,164	764	219	2,945
DA 4	1,600	1,780	180	52	1,728
Total	$\mathbf{5 , 6 0 0}$	$\mathbf{8 , 7 0 1}$	$\mathbf{3 , 1 0 1}$	$\mathbf{8 8 9}$	$\mathbf{7 , 8 1 2}$

[^0]
Annual method in over-depreciation shortcuts

Table 26: Alloc ation of remainder of entry ACA to reset cost base assets (\$)

Asset	AV	MV	TCSA 1	OD reduction*	TCSA 2**
DA 1	800	2,400	2,373	444	$\mathbf{1 , 9 2 9}$
DA 2	800	1,400	1,384	167	1,217
DA 3	2,400	3,200	3,164	222	2,942
DA 4	1,600	1,800	1,780	56	1,724
Otherassets		50,000	49,436		
Total	$\mathbf{5 8 , 8 0 0}$	$\mathbf{5 8 , 1 3 7}$	$\mathbf{8 8 9}$	$\mathbf{7 , 1 8 2}$	

*The figures in this column are from table 27, Step 21.
**The TCSA 2 column a mounts a re the final TCSAs for the releva nt a ssets.
Note that $\$ 49,436$ is the TC SA of Other assets.

Table 27: Calculation of over-depreciation reduction using annual shortcut method (\$)

Financial year ending	30.6.99	30.6.00	30.6.01	30.6.02	Total
Step 2A					
Total book WDV	3,600	5,000	8,000	8,800	
Total tax WDV(AV)	3,200	4,000	6,000	5,600	
Difference	400	1,000	2,000	3,200	
Inc remental increase (result)	400	600	1,000	1,200	
Step 2B					
Step 2A result x 70\%	280	420	700	840	
Step 2C	Reduce step d = untaxed, e = unfranked $\mathrm{f}=$ tra nsitiona	by step 2Bxd/ frankable profi dividendspaid tep 3 profits from	d te ff), where: of the yearstill om that year'sp that year	hand ts	
Amount d	0	0	0	920	
Amount ${ }^{*}$	256	219	414	0	
Amount f	0	0	0	0	
Sum of de+f	256	219	414	920	
Reduction	$\begin{array}{r} 280 \times 0 / 256 \\ =0 \end{array}$	$\begin{array}{r} 420 \times 0 / 219= \\ 0 \end{array}$	$700 \times 0 / 414=0$	$\begin{array}{r} 840 \times 920 / 920= \\ 840 \end{array}$	
Result afterstep 2C	280	420	700	0	
Step 2D to 2F N/A					
Step 2G Total of years	280	420	700	0	1400
Step 2H	Limit Step 2G (a) unfranked (b) transitiona	sult by sum of dividends paid: step 3 profits:	$\begin{array}{r} 889 \\ \underline{0} \end{array}$		889**

Step 2I	Tax AV	Book WDV	Excess of book over tax value	OD reduction	TCSA 1	TCSA 2***
DA 1	800	2,400	1,600	444	2,373	1,929
DA 2	800	1,400	600	167	1,384	1,217
DA 3	2,400	3,200	800	222	3,164	2,942
DA 4	1,600	1,800	200	56	1,780	1,724
Total	$\mathbf{5 , 6 0 0}$	$\mathbf{8 , 8 0 0}$	$\mathbf{3 , 2 0 0}$	$\mathbf{8 8 9}$	$\mathbf{8 , 7 0 1}$	$\mathbf{7 , 8 1 2}$

*These a mounts are from table 32.
**This is the tota IOD reduction. In step 21 , it is apportioned a ccording to the Excess of book over tax value column a mounts for the relevant assets to calculate the reduction for each asset. For example, OD reduction for DA $2=889 \times 600 / 3,200$.
**TCSA 2 column a mounts are the results of TC SA 1 a mounts minus OD reduction a mounts.

Table 28: Taxation depreciation schedule - depreciating assets depreciated using prime cost method for income tax purposes, at 20\% per annum (\$)

	DA 1	DA 2	DA 3	DA 4	Totals
Fina ncial yearending (Y/E) 30 June 1999					
Cost	4,000				
Depreciation	800				
Ending AV	3,200				3,200
Y/E 30 J une 2000					
Costor AV start	3,200	2,000			
Depreciation	800	400			
Ending AV	2,400	1,600			4,000
Y/E 30 J une 2001					
Costor AV start	2,400	1,600	4,000		
Depreciation	800	400	800		
Ending AV	1,600	1,200	3,200		6,000
Y/E 30 J une 2002					
Costor AV start	1,600	1,200	3,200	2,000	
Depreciation	800	400	800	400	
Ending AV	800	800	2,400	1,600	5,600

Table 29: Accounting depreciation schedule - depreciating assets depreciated using prime cost method for ac counting puposes, at 10% per annum (\$)

	DA 1	DA 2	DA 3	DA 4	Total
Y/E 30 June 1999					
Cost	4,000				
Depreciation	400				3,600
Ending book value	3,600				
Y/E 30 J une 2000					
Cost orbook at start	3,600	2,000			
Depreciation	400	200			
Ending book value	3,200	1,800			
Y/E30 June 2001					
Cost orbook at start	3,200	1,800	4,000	400	
Depreciation	400	200	3,600		
Ending book value	2,800	1,600			
Y/E30 June 2002	2,800	1,600	3,600	2,000	
Cost orbook at start	400	200	400	200	
Depreciation	$\mathbf{2 , 4 0 0}$	$\mathbf{1 , 4 0 0}$	$\mathbf{3 , 2 0 0}$	$\mathbf{1 , 8 0 0}$	$\mathbf{8 , 8 0 0}$
Ending book value					

Table 30: Deferred tax liability summary (\$)

Financial year ending	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 2}$
Book value at end	3,600	5,000	8,000	8,800
Tax AV at end	3,200	4,000	6,000	5,600
Book lesstax value	400	1,000	2,000	3,200
Tax rate	36%	36%	34%	30%
DIL balance	$\mathbf{1 4 4}$	$\mathbf{3 6 0}$	$\mathbf{6 8 0}$	$\mathbf{9 6 0}$

Table 31: Acc ounting profits summary (\$)

Financial yearending	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 0 1}$	$\mathbf{3 0 . 6 . 0 2}$
Income	6,000	6,000	6,000	6,000
Expenditure items				
Expenses	2,000	2,000	2,000	2,000
Depreciation	400	600	1,000	1,200
Provision fortax	1,152	1,008	680	480
DTL	144	216	320	280
Total	3,696	3,824	4,000	3,960
To retained ea mings	2,304	2,176	2,000	2,040
Distributed Y/E 00	2,304			
Distributed Y/E 01		2,176		
Distributed Y/E 02			2,000	
Balance	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 , 0 4 0}$

Table 32: Dividends paid out summary (\$)

Financial year ending	$\mathbf{3 0 . 6 . 9 9}$	$\mathbf{3 0 . 6 . 0 0}$	$\mathbf{3 0 . 6 . 0 1}$	Total
Paid franked	2,048	1,957	1,586	5,591
Paid unfranked	256	219	414	889
Total dividend	$\mathbf{2 , 3 0 4}$	$\mathbf{2 , 1 7 6}$	$\mathbf{2 , 0 0 0}$	$\mathbf{6 , 4 8 0}$

Note: In this exa mple, it is a ssumed that SCo only pays final dividends.

References IncomeTax Assesment Ad 1936, former sections 46 and 46A
IncomeTax Assessment Ad 1997, section 40-85
ImaneTax Assesment Ad 1997, sections 705-50, 705-70, 705-75, 705-100; as amended by:

- NewBusiness Tax System(Consdidation) Ad(Na 1) 2002 (No. 68 of 2002), Schedule 1
- NewBusiness Tax System(Consdidation, ValueShifting Demeges and Other Measures) Ad 2002 (No. 90 of 2002), Schedule 2

InconeTax Assessment Ad 1997, section 705-80; as amended by NewBusiness Tax System(Cansdidation) Ad (No 1) 2002 (No. 68 of 2002), Schedule 1

IncomeTax Assessment Ad 1997, Subdivision 126-B
IncomeTax Assessment Ad 1997, subsection 705-90(10); as inserted by Tax Lans Amendnet (2004 Measures No 6) Ad 2005 (No. 23 of 2005), Schedule 1, Part 7

ImaneTax Assesment Ad 1997, section 705-50 and subsection 995-1(1) as amended by Tax Laus Amendment (2010 Meesures No 1) Ad 2010 (No 56 of 2010), Schedule 5, Part 6

Explanatory Memorandum to Tax Lavs Amendment (2004 Measures No. 6) Bill 2004, paragraphs 1.135-1.148

Explanatory Memorandum to Tax Laws Amendment (2010 Measures No.1) Bill 2010, paragraphs 5.180-5.186.

Taxation Determination TD 2004/4- Income tax: Is a dividend paid before 1 July 1987 an unfranked dividend for the purposes of section 705-50 of the IncomeTax Assessment Ad 1997?

Tax Lans Anendmet (Repeel fInqpeativeProvisins) Ad 2006 (No. 101 of 2006), which repealed sections 46 and 46A of theIncomeTax Assesmet Ad 1936

Revision history

Section C 2-4-640 first published 28 May 2003.
Further revisions are desc ribed below.

Date	Amendment	Reason
10.12.04	Constraints on use of short cuts na rowed down so that the only depreciating assets excluded are grapevines and hortic ultural plants, p. 3.	Provided under Commissioner's administrative powers.
	Reference to new TD 2004/4, p. 7.	Clarific ation.
	Note on use of step 2F by a public company not using either Aggregate orAnnual method, p. 8.	Cla
	Notes on use of steps 1F and 21 where Law Administration Practice Statement PS LA 2004/ 12 is being a pplied in detemining TC SAs for depreciating assets, pp. 5 and 8.	Cla $\mathrm{n}_{\text {fic }}$ ation
26.10 .05	New information on determining the extent to which dividendshave been paid out of profits sheltered from income ta $x, p .2$, and change to worksheet 1, step 3, p. 11.	Legislative amendments.
15.11.06	Additional fourth example.	For cla rific ation and to
	Corrections in Example 1 to the ACA calculation on the application of s. 705-80 a nd s.s. 705-70(1A). For simplicity, the capital contribution a mount has been changed.	orect emors.
	Minor numberchanges in tables 1, 3, 4,6 and 19.	
	Updated referencesto inoperative provisions.	Legisative amendment.
26.6.07	Note on proposed changesto clarify both the valuation of lia bilities and the accounting principles to be used, and to the cost setting rulesto phase out over-depreciation deduction.	Reflect a nnouncement on 8 May 2007 by Assistant Treasurerin media release no. 50.
6.5.11	Removal of note on proposed changesto clarify both the valuation of liabilities and the a ccounting principlesto be used.	Legislative amendments.
	Removal of note on proposed changesto the cost setting rules to phase out over-depreciation deductions.	
	Minorchangesto reflect changed wording in formersection 705-50.	

[^0]: *This is the a mount of unfrankable retained profits as at the joining time. Of the retained profits $\$ 2,040$, the liability to pay tax of $\$ 480$ would mean $\$ 920$ would not be frankable, had $\$ 2,040$ been distributed.
 **This is the tota IOD reduction. In Step 1F, it is a pportioned according to the step up a mounts for the relevant assets to calculate the reduction for each asset. For example, OD reduction for DA $1=889 \times 1,573 / 3,101$.
 **The step up column a mounts are the differences between the TC SA 1 column and the Tax AV column.

